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Elastic wave-motion across a vertical discontinuity 
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S U M M A R Y  
Exact solutions are obtained for the displacement field in an elastic half-space composed of two quarter spaces welded 
together. The configuration is excited by a plane SH wave impinging upon the discontinuity at an arbitrary angle. The 
application of the Kontorovich-Lebedev transform to this boundary value problem leads to two simultaneous integral 
equations which are solved exactly, It is shown that the discontinuity may enhance the spectral displacements up to a 
factor of two, The results could be applied to propagation of seismic shear waves past fault zones in the earth's crust. 

1. Introduction 

In recent years considerable interest has been shown by many investigators to the propagation 
of elastic waves in parallel layered media [1]. The techniques developed for such configurations 
can model only vertical heterogeneities while solutions to problem involving lateral structural 
variations in elastic media are almost unknown. The reason is that the boundary conditions 
equations in layered media are reduced to a set of algebraic equations while the other types of 
non-homogeneity involve ab initio integral equations for the reflection coefficients. Certain 
approximations are sometimes helpful, e.g. [2] but useful working tools are still lacking in as 
much as the ensuing integral equations are not text-book items. 

The interaction of elastic waves with dipping discontinuities is a problem which belongs to 
the above category. We have found however that for a vertical dip angle a solution is attainable 
in a closed form. It is hoped that these results could be generalized to more complicated physical 
regimes. 

2. Basic equations, solutions and source geometry 

Consider the wave equation for an homogeneous elastic solid [-3] 

(32D z grad div D - v ~  curl curl D (2.1) 
~t  2 - -  Vp 

where D is the displacement vector, t is the time and vp and vs are the longitudinal and shear 
wave velocities in the medium, respectively. If a primary excitation is generated by a line source 
parallel to the z-axis, the resulting field is independent of the z-coordinate. The general solution 
of Eqn. (2.1) is composed of three basic constituents. The first corresponds to horizontally 
polarized shear motion (known as SH waves) 

D 1 = M = e Z U (r, 0) e i'~ , div D t -- 0 ,  (2.2) 

where (r, 0) are cylindrical polar coordinates in a vertical plane and e~ is a unit vector in the 
z-direction. Equation (2.1) is then reduced to 

Oz U 1 0 U  1 Oz U / ~ 2 U = 0  / ~ = i c ~  (2.3) 
v2v- 2u = + ;  Trr + r 2 eo  2 ' 

The remaining solutions are used to describe the coupled compressional-shear wave motion 
(known as P-SV waves) 

Journal of Engineering Math., Vol. 9 (1975) 145-158 



146 A. Ben-M enahem 

D 2 : L = grad ~ e i'~ , curl D 2 = 0,  (2.4) 

03 = N = curl(ezz)e i~ , div 03 = 0,  (2.5) 

with the corresponding equations 

V 2 ~ , _ ~ 2 ~ , = 0 ,  V 2 Z - / ~ 2 Z = 0 ,  ~ = i ~ .  (2.6) 
Vp 

A torque line source generates waves of type M only while a compressional line source will 
produce both L and N solutions in the presence of a discontinuity. We shall treat only solutions 
of the M type. 

A solution of Eqn. (2.3) which represents divergent waves is given by 

U = { 
s h  mO 

} Kim (~r). (2.7) 
c h  mO 

These solutions are sufficient to describe the total field because reflections from discontinuities 
in the medium can be considered as waves diverging from a proper set of images. 

The geometry of the problem is sketched in Fig. 1. An elastic half-space is composed of two 
wedges, welded together at 0 = e. The constants of the right wedge are denoted by the subscript 
l and those of the left wedge by the subscript 2. 

O=rr 0 0 = 0  

| Q 

Figure 1. Geometry of line source at finite distance from the vertex. 

A harmonic line source is placed at (%, 0o) perpendicular to the plane of the paper, parallel to 
the z-axis at 0. The Green's function for the two-dimensional wave equation is (2re)- ~ Ko (fiR) 
where R = [ r  2 q- r~ - 2rr o cos (0 -  0o)] ~ is the observer-source distance. Using the integral form 
of the addition theorem for the Bessel functions, we represent the source in the form [4, p. 3] 

Uo = ~ K o ( ~ R )  = ~ K i m ( ~ r ) K i m ( B r o ) c h m ( ~ - l O - O o l ) d m ,  (2.8) 

0 <  10-0ol < 2re, 

where so is the line-source constant, with the dimensions of spectral displacement. Note that 
for real values of m the function Kim (/?r) is real for real values of its argument. In Eqn. (2.8) it 
is understood that the function chm (re + 0 -  0o) is used for 0 < 0 o and chm ( ~ -  0 + 0o) for 
0 >0o. 

3. Integral equations for the reflection coefficients 

Boundary conditions are as follows: The stress component in the z-direction must vanish 
over the entire free Surface (0 = 0, rt). [-The other two components are identically equal to zero 
for horizontally polarized shear (SH) waves]. At the common boundary of the two media 
(0 = ~) we require a continuity of both the displacements and the stresses. 

Assuming that the displacement in either wedge can be represented by an integral whose 

Journal of Engineering Math., Vol. 9 (1975) 145-158 



Elastic wave-motion across a vertical discontinuity 147 

integrand is a linear combination of azimuthal outgoing and incoming waves with certain 
reflection coefficients, we have 

U~ (r, O) = 2S~ f o -~- [A(m)shmO+B(m)chmO+�89 

U 2 (r, 0) = 2s~ f ~ [C(m) shmO + D(m) chm0] Kim(flsr)Kim(fl lro)dm, ~ o  

Applying the boundary conditions 

0 < 0 < e ,  (3.1) 

e <  O_<rc. (3.2) 

1 OU 
P~o- - 0 at O= 0 and 0 = zr, (3.3) 

r ~0 

Pzo (o = ~ + o) = P~o (o = ~ -  o ) ,  u~ (o = ~) = u~ (o = ~) ,  

we obtain two simultaneous integral equations for the unknown functions B=X(m) and 
D = Y(m) ch rim. Thus 

A(m) = - �89  sh m(z~-Oo), C(m) = - Y(m)sh zrm, 2 = #2,  (3.4) 

f o X (m) ch m~ Kira(fll r)Kim(fll ro)dm 

- r(m) ch m(rc-a)Kim(fl2r)Kim(flaro)dm = F(m, r), (3.5) 
o 

+ 2 f o  Y(m) shm(~-~)Kim(fl2r)Ki"(fl lr~ (3.6) 

The source terms on the right-hand side of Eqns. (6.10) and (6.11) are given by the integral 
expressions 

F(m,r)=�89 fo  [shm(~-O~176176176 (3.7) 

G(m, r) = �89 o [sh m(zc-Oo) ch m~+sh  m(~Z+0o-~)] K,m(fllr)K,,,(flxro)mdm. (3.8) 

Multiplication of Eqns. (3.5) and (3.6) by Ki~(fl ~ r)r-ldr followed by integration over (0, ~ ) ,  
yields, using (A.6) 

7~2 foo 
- -  X(z)ch  ~z K,,(flaro) - Y(m)Q(z, m)ch m(n-a)Kim(flaro)dm 
2z sh rcz o 

= f [  F(m'r)K`~(fllr) dr-r ' (3.9) 

~2z X(z)sh ~z Ki~(fl,ro)+ 2 ~o~ Y(m)Q(z, m)sh m(Tz-~)K,m(flxro)mdm 
2z sh ~z ) o  

f dr = ~ G( , , , ,  O K . ( t ~ ,  r) - - ,  
o /" 

where 
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148 A. Ben-Menahem 

Q(z, m)= j~  Ki~(fllr)Ki~(flzr ) d rr " (3.10) 

Elimination of X (z) from Eqn. (3.9) leads to a single integral equation in the unknown trans- 
mission coefficient Y(m, 0o, ro): 

(~ Y(m)Q(z, m)Ki,,(fl, ro) {2m ch ~z sh re(n-a)+ z sh ~z ch m(n-a)}dm 

= lrc2 ch r0 o Ki,(fl I ro). (3.11) 

Likewise, the integral equation for the second unknown function is 

fo X~ (m)Q(m, QKi,,(fll ro){2z shz(n-cQ ch rne+m c h z ( n - ~ ) s h  ma} dm 

= l~ Q(m'z)Ki~(f l lr~176 

+ m c h  z ( ~ -  cQ ch m(c~-Oo)]dm, (3.12) 
where X 1 (m)= X(m)+ chm ( ~ -  0o). 

In the derivation of Eqns. (3.11) and (3.12) it was assumed that both X (m) and Y(m) are even 
functions of m. The assumption is based on the observation that these functions are even in m 
for the case fl~=fl2 (Appendix B). 

The spectral displacements in each wedge are obtained from Eqns. (3.1) and (3.2) 

U2(r, 0) = 2s~ Y(z) ch z(~-O)Ki,(fi2r)Ki~(fl~ ro)dz , a <- 0 <- ~ , (3.13) 
U o  L oO 

2s~ f Xl(z ) ch z0 K,~(fi, r)K,~(fllro)dz, 7-0  
U~(r, 0) = 0-<0--<0o-<_c~, 0.14) 

2s~ IX1( Q ch z 0 - s h  z ( 0 -  0o) sh ~z] Ki~(fllr)K~(fllro), 

0 < 0  o G O _ < a .  (3.15) 

4. Interaction of  a plane wave with a vertical discontinuity 

We observe (Appendix B) that for fll = f12 and ~=�89 the solution for Y(m) is proportional to 
ch mO o. It is therefore reasonable to put in Eqn. (3.11) the trial solution Y(m)=A o ch mb for 
a=�89 The equation for A o and b is then 

~ Q(~,m)K,.(~ro) hm + +ch in  ~ - 6  dm +A~ sh 2-  o 

7~ 2 
= ~-  ch zOoK~(filro). (4.1) 

Executing the integration over m with the aid of Eqn. (2.8) and Table 1, we find with Re {b} < 2!n, 
po =& ro/& 

2n'c Jr ~176 Ki~(fllr) ~ f12~/ ( r2 + p2 _ 2rpo sin b)] + Ko[  fl2x/( re + P~ § 2rpo sin b)]~, d_r 
"csh  

o 2Ki~(fllro) r 
nz ~ f ~ + p2 o -- 2rpo sin b)] dr + 2 c h ~ - ~ - b  j Ki~(fllr) { K~ -K~176 r 

o 2K,~(filro) 

_ rc ch zO o . (4.2) 
2Ao 
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Elastic wave-motion across a vertical discontinuity 

TABLE 1 

A selected list ofKontorovich-Lebedev transjbrms 

149 

= . o  2 f ~  -co dr f l>0  f(r) ~2 o vshn~F(z)K,,(f lr)dz F(z) f(r)K,~(flr) ~ ,  = 

7t" ch "c (re--I0-0ol) 
z sh ~zz Ki~(flr~ K~ {r2 +rZ~ 2rr~ c~176 ] 

O< I0-0ol s 2~ 

T 2T sh rc 

r ~t 

Q (z, m) K,,, (ill r) 

~2 3(z + m)+ b ( z -m)  
2z sh rcz = Qo (z, m) Kim (fir) 

i F (m + z)] (32~f l r ) - r  [14-  i 

x F [~ + ~ (re-'c)! F []  - ~ (m-'c)] 

1 
- K .  (#ro)  
r o 

7r 

2z sh 7~z [K,(,_,.) (flro) + K,(, +,.) (flro) ] 

ch zO 
.c2 +22 Ki~(firo) 

"c th ( ~ -  ~) K, ,  (flro) 

1 rt sh Oz o~ , c o s O = ~ c o s ~ < l  
s h  sin 12 7~"C 

n sin ~ c~ 
fishrrz shO ' c h f 2 = ~ c o s t / = > l  

7Z Ot 

rshzc~chl2~' cosl2= ~cosr /<  1 

K,,,(flr) 

6+ (r--ro) 

K,~[fl(r +ro) ] 

l~(flr<)Kz(flr>) cos 20 

e, Iu,(flr <)Kun(flr> ), 
n=O 

r e-~rcosn 

7~ / . t -  

e - ~ r  cos)l 

zsh~C~ chf2 = ~ c o s q > l  

ch az b - -  
sh b~ .=o (-)%"I(~")/b(flr) cos rcn , b - a  > 
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150 A. Ben-M enahem 

As we let ro~OO , the expressions in the curly braces in the two integrands tend to the limits 
ch (112 r sin b) and sh (1t 2 r sin b) respectively. The remaining integrals are found to be (Table 1) 

f~  Ki+(111r)ch(112r s i n b ) d r  rc ch •2z+ch  (21-c 
)o r 2 ~ sh m ' 

0 [i'+Ki*(111r) sh(112rsinb)dr rc f12 cosb  s h f 2 2 z - s h ~ ? l z  (4.3) 
~ .  o 7 - 2 //1 sin ~2 sh rcz ' 

where 

112 
COS ~"2 2 ~- ~ sin b ,  f21 = Q 2 + x ,  COS ~'21 - -  111 sin b ,  

and provided that sin b< 111/fl2. Substituting Eqns. (4.3) in Eqn. (4.2) and noting that 
sh ~22z'- sh f21z = 2 ch [�89 q- ~2)] ~ sh�89 and ch (22z + chf21z = 2 ch [�89 t + f22)] z ch �89 we 
have 

2 ch bm 
Y(m) = (4.4) 

1 + 2 v l  cosb  
U 2 COS 0 0 

sin b = v2 sin 0o. (4.5) 
Vl 

The physical situation is described in Fig. 1. A plane wave is impinging from the right upon 
the formation and part of the energy is transmitted to the left side of the discontinuity. The 
spectral displacements are given by Eqn. (3.13) 

4Aoso f ~ U2(r, co) = lim 22 ch bm ch m(n-O)Kim(112r)Ki=(111ro)dm 
ro~oO,So~OO �9 0 

- A~ lim [soKo(111ro)] 
7r r o ~  oo, so--* oo 

Ko [112x/{ r2 + P~ - 2rpo cos ( 0 -  b)}] + K o [fl2x/{ r2 + p2 _ 2rpo cos (0 + b)} ] 
x Ko (fix ro) ' 

that is, 
2 

G (r, ~ )  = - 
7~ 

rc (4.6) b < = 2 , 0 <  ~ , 

cos( sin0sin0o)exp { t47> 
\ V  1 V 2 l+2V~ cosb  

v 2 c o s  0 o 

where So is the renormalized source magnitude. As tong as v 1 > v 2 or sin 0 0 < v i / v  2 ~ 1, COS b 
is real and the wave travels unattenuated. If however Vl/V 2 < sin 0 0 < 1, b becomes complex: 

b = ~ r c + i x ,  cosb--sin b=ch-iShXsgn~ , s h z = ~ /  [(V~sin0o) - . (4.8) 

The spectral field is then governed by the expression 

2+o ~ ~  sin 0 si~ 0o ) 
U2(r ,  o9) = - e x p  {-Iml r-- I cos(~-0)l  sh Z} . (4.9) cosSh 0o s+nq 

The decay factor is proportional to exp {-(Icol v;  1 sh Z)x} where x is the distance of the 
observation point from the vertical discontinuity. 
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Elastic wave-motion across a vertical discontinuity 151 

The corresponding time-functions are obtained by evaluating the Fourier transforms of 
Eqns. (4.7) and (4.9), 

1 1 
U2(r,t) = - [ c o s b ]  [ f ( t - t l ) + f ( t - t 2 ) ] '  (4.10) 

n 1 + 2  vl 
L v2 cos 00J 

Vx => v2 or s in0 o =<--vl =< 1 
v2 

v~ So s h ~  
U2(r,t) 2 v2 cOS0o 

= ~  I1 + (  )~vlv2 c o s S h ~ o f ? [ F ( t - T l ) + F ( t + T 1 ) ] '  (4.11) 

Vl 
- -  < sin 0o < 1 
v2 

where 

f(t) = ~1 f~oo s~ (~176176 ' (4.12) 

r [ cos (n -- 0) 1 cos 0 o -  2t 
F ( t ) = v l  , T ~ = r s i n 0 s i n 0 o ,  (4.13) 

r 2 v 1 
t2 + v-~ c~ 0 sh 2 Z 

t2 T1 + r Icos(n-0) l  cos b r . . . .  cos [ b - ( n - 0 ) ]  > t l ,  (4.14) 
V 2 V 2 

_ _  r 

tl = _ T  1 + r Icos(n-0)l cos b = - -  c o s [ b + ( n - 0 ) ]  . (4,15) 
V 2 V 2 

Note that below the critical angle sin Oc =vl/v2, the displacements propagate undistorted 
with the original functional source dependence f(t) [e.g. (5 (t) tor go = constant]. Beyond the 
critical angle the signal decays with time and distance. Equation (4.11) is valid only for a delta 
function time dependence at the source. 

The geometrical interpretation of Eqn. (4.10) is shown in Fig. 2, There are two rays which 
correspond to f ( t -  t 1) and f ( t -  t2). The first arrival is refracted once on the vertical boundary. 
The path of the late arrival depends on whether b X n -  0. If b > n -  0, the first refraction is at 
the vertical boundary followed by a reflection at the free surface in medium 2. If b < n -  0, the 
reflection is in medium 1 and it happens prior to the refraction. If b = n -  0 i.e. sin ( n -  0) = v z v [ 1 
sin 0o, the points of reflection and refraction coincide at 0. For all cases, the time interval 
between the arrival of the two fronts is one and the same 

2r 
At = t 2 -  tl = 2T t = - -  sin 0 sin 0 o . (4.16) 

Vl 

This is easily verified from geometrical considerations (Fig. 2). 
The displacements in medium 1 are obtained in a similar way: we put X(m)=B o ch am, 

e=�89 in Eqn. (3.12), obtaining, after some manipulations 

2A 0 ch amQ(m, r)K,,(fllro){2}dm = Jo Q(m, z)K,,(fllro){1}dm , (4.t7) 

where 

{ 1 } = 2 z s h 2 [ c h m (  3 n - 0 o ) -  c h i n ( 2 - O o ~ - 2 c h m ( 2 +  0o) ] 

+ c h ? [ s h m ( 3 ~ - O o )  + s h m ( 2 - O o ) + 2 s h m ( 2 + O o ) ] m ,  (4.18, 
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(o) 

(b) 

(c) 

_ DL%'r-- .._V ~ t2 
DO' = ~,-C = 2"--P'P' = 2 r s in O / / ~  J'~.,. 
AP =PD,DC ~ b >'n'- O 
C-'B = 2rsinOsinOo ~ ' ~  

V21 Vl ~ t r  

0 , --rcos(~-O) - -  

I ~/bi~:: 7 

OA=r sin(O,b) 
cosb 

OK = OA tgOo 
OF-r sin(P-b) 

CF+ FG = 2rsinOsinOo 

F K 

t 2 

7 
b<Tr-O 

V2•V ~ "  ~ tj 

I 

0 
"/r-0 

P ~  t2 

b"~.~ b = -n'-0 

U .  
I ~tj 

Figure 2. Field of plane-wave behind the discontinuity. 

~[ ( ; )  (; 1] c h a m { 2 } = 2 z s h ~ -  c h m  + a + c h m  - a 

+och~ (hot;+ a) + s~o(;- ~)] ,4,~, 
This equat ion  must  render a unique solut ion for the pa ramete r s  A 0 and a, valid for all z. 

To  this end we carry out  first the integrat ion over  m on bo th  sides of  Eqn. (4.17). Using the sum 
formulae  of the hyperbol ic  functions and the integrals (Table 1) 

Q(m, ~)Ki,,(fllro) ch mqdm = ~ o 

(4.20) 

~ ~ Ki~(fiar)Ko[fll~/(ra+r~+2rrocos r/)] dr Q(m, z)Ki,.(fl,ro) msh  mrldm = ~ N o r ; 
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Elastic wave-motion across a vertical discontinuity 153 

f { Ki , ( f l2r )e-a  . . . . .  , dr _ n ch qSz cos ~b = cos 
o r z sh nr 

f oo n sh ~bz 
0 K" ( f l 2 r ) e -~  . . . . .  " d r =  fi2shnz sinq5 f l 2 + f l l c o s ~ > O  

together with the limit 

(4.21) 

lim K~ [fll ~/( r2 + r2 + 2rro cos t/)] = exp [ -- fll r cos t/] (4.22) 
ro~ ~ go  (ill ro) 

we find that Eqn. (4.17) leads to the solution 

1 - 2  vl cos b 
a = 8  o, B o =  v 2cos8o 

1+2  vl cos b ' (4.23) 
v 2 cos 8 o 

where b is given by Eqn. (4.5). The corresponding displacements are found from Eqns. (3.14) 
and (3.15) 

2S~ .f~ [ch z ( n - O > ) + B  o ch "cO>] ch zO<Ki~(f l lr)Ki~(f l lro)dz,  U1 = -~- 

0> = max (0o, 0), 0< = min (80, 0). 

The evaluation of Eqn. (4.24) is similar to that of Eqn. (4.6), rendering 

go [ e { cor } { 80)}] Ul(r , co) = ~ xp i - -  cos(0-0o)  + exp icor cos(0+ 
V 1 V 1 - 

+ ~o"o Iexp ~-i~os,o-oo,} + exp { - i ~ . c o s , o + O o , } l ~  . . . 
The application of the Fourier transform to (4.25) yields 

t + - - c o s ( 0 - 0  o + f  + - - c o s ( 0 + 0  o 
V 1 Vl 

+.o{f[,-~_cos(o_oo,]. +,[,  ~: cos,o+oo,;}. 

2nU~ (r, t) = 

(4.24) 

(4.25) 

v 1 ~ v 2 or sin 8 o < - -  v l  _ _ < 1 
V2 

{f I t + ~-r cos(O--O0)l + V l  f It + f~- c~ } V l  

+ c o s 2 e { f [ t - - -  

+ s i n 2 e { f " I t - r c ~ 1 7 6  

(4.26) 

r cos(O-Oo,l+ :'E~---~ cos,O+Oo, 1 } 
V 1 V 1 

_,_ ~o [~ .r ~os,O§ }. 
v~__< sin0o__<l, 
V 2 

where 
t g ~ = 2 v l  shx  

V 2 COS 8 0 ~ B~ = e2ie ' 

and f.(t), known as the allied function of f(t), is defined as 

(4.27) 
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154 A. Ben-Menahem 

FP =rcos (0-Oo) 

PA+AB+BC=2FP 

(a) 

B 

/ 
\ \ t i  

\ 

" x t  3 Oo < O 

Figure 3. Field of plane-wave in front of the discontinuity. 

0 C 
\ / V  Oo cot 

X / 

/ \  

\t4 

B 

OA = rcos (0o -0) 

BC+CP, PD =2OA Oo > O 

(b) 

fa(t) = 2nn _co go(co)e li<~176 = --~z P J _ o o - - z ' t  (4.28) 

[e.g. the allied function of 6 (t) = re- i j.~o cos cot de) is 6, (t) = n -  a S~o sin cot de) = (rot)- 1 for t r 0, 
and = 0 for t = 0]. 

The physical-geometr ical  in terpre ta t ion of Eqns. (4.26) is as follows : The field at any point  
in region 1 is composed  of four contr ibut ions  tha t  arrive at different times. Since the source is 
at infinity there is no unique fiducial t ime and the reference t ime of the solution is the time that  
the front hits the vertex 0 (Fig. 3). The  t ime it takes the front to move  f rom the observer  at 
(r, 0) to the vertex, in the direction Of 0o, is t o = rv~ 1 cos ( 0 -  0o). The four "rays"  arrive therefore 
at the following times relative to the direct wave, 

Direct  arrival t 1 = 0 ,  
2r 

Single reflection at the free surface t 2 = - -  sin 0 sin 0 o , 
vl 
2r 

Single reflection at the vertical discontinuity t 3 = - -  cos 0 cos 0 o , 
Vl 
2r 

Two  reflections t4 = - -  cos ( 0 -  0o) = tz + t3 �9 
vl 

For  angles of incidence, beyond the critical angle (0 o > s in -  1 vl vy 1) the shape of the pulses 
reflected f rom the discontinuity is distorted since each Four ier  c o m p o n e n t  is phase-shifted by 
the amoun t  2e. 

The total  spectrum in region 1 can be rewrit ten as 

v l ( , ,  co) = J 

'7{ )I go IcoT_l r io ] r = - -  cos sin 0 sin (1 + B2)+  2B o cos cos 0 cos 0 o e iv , 
z~ \ v  1 

( ~ r  ) 
tan~s = t a n \ l  I~-, cos 0 c o s  0o , (4.29) 

! 

v l > v 2  or  sin,s0 o < Vl < 1 ,  B o < 1  
I) 2 

C o m p a r i n g  Eqns. (4.29) and (4.7) we note that  bo th  spectra have "holes" due to destructive 
interference at frequencies f ,  which depend bo th  on 0 o and the coordinates  of the observat ion 
point  
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Elastic wave-motion across a vertical discontinuity 155 

f" = r sin 0 sin 0o n = 0, 1, 2, . . . .  (4.30) 

Beyond the critical angle, for co > 0 

- -  cos sin 0 sin 0 o cos cos 0 cos Oo-e  e i" , (4.31) 

U 2 (r, co) - 2g~ cos~ cos sin 0 sin 0 exp - - -  [ cos ( ~ -  0) 1 sh Z + ie , (4.32) 
~ V 1 

and the location of the spectral zeros are unchanged. In region 1, however, there is an additional 
set of holes at 

f k =  [ ( ~ )  + ~ � 9  r cos 0V~cos 0 o '  k = 0 , 1 , 2 , . . . .  (4.33) 

The spectral amplitude ratio of Ut and U2 below the critical angle, for the same values of r and 
sin 0 on both sides of the discontinuity, is found from Eqns. (4.7) and (4.29) to be 

U-A = x/{1 --3) 2 sin 2 (k 1 x cos 00) } < 1 (4.34) 

where 

x/(1 Bo 2) co T =  - < 1 ,  k x = - - ,  x = r c o s 0 .  
Vl 

The reader can easily verify that Eqns. (4.7), (4.9) and (4.25) indeed satisfy the boundary con- 
ditions (3.3). 

A short discussion on the field of a line source at a finite distance from the vertex is given in 
Appendix B. 

5. Conclusions 

The effect of a vertical discontinuity on the propagat ion of plane waves in an elastic half-space 
is as follows: 

(1) Part of the field is thrown back and made to interfere with the incident radiation. The 
ensuing wave pattern developes spectral holes at an infinite set of frequencies that depend on 
the medium parameters as well as upon the coordinates of the observation point (r, 0) and the 
angle of incidence 0 o of the plane wave. 

(2) It is convenient to compare the field in the presence of the discontinuity to the field in its 
absence. Their ratio is a measure of the anomaly due to the velocity and rigidity contrasts. 
Thus, below the critical angle 

v,, v2) / 
/ 1, v l=  

u1 vl, I 
I 1, vl = 

2 
#2 vl cos b ' 0o, b < l r t ,  (4.35) 

1 +  
#1 v2 cos 0 o 

cos 0 cos 0 o > ( 1 - B o ) .  (4.36) 
2 V l  

The maxima of both ratios is two. 

Appendix A 

The K-L  transform of a function f(r),  0 < r < ~ is given by the relation 

F(z)= fof(r)Ki~(flr) dr--'r (A.1) 
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where z is real and fl is a complex constant. If f (r)  is such that r - i f ( r )  is continuously 
differentiable and both  rf(r) and rd/dr[r- l f (r)]  are absolutely integrable over the positive 
real axis, the inversion formula assumes the form [5], 

2 f ~ F(z)Ki~(flr)z sh 7~zdz. f(r) = ~ o (A.2) 

This pair of reciprocal formulas can be combined to yield the integral theorem 

2 f ~  f ~ z sh ~z K,,(flr)dz f(r . (A.3) f(r) = ~ o �9 o 

Writing Eqn. (2,3) in the form f ( r )= S~T(r + (r-{)dr  where 6 + (x)= 2H(x)6 (x)is the unit 
impulse function. {3 (x) is th0 usual Dirac function and H (x) is the Heaviside unit step function}, 
we obtain the representation 

3+( r - r0 )  2 f ~  = z sh ~z K,,(flr)K,~(flro)d,. (A.4) 7[.2 ?'0 

Similarly, from Eqns. (A.1) and (A.2) 

F(z) = ~2 f*o K~(flr) drr Oo f~ F(m)Kim(flr)m sh =mdm, (A.5) 

and therefore 

2 K,,(flr)K,m(fir ) , fl > 0 (A.6) 3 ( z + m ) + a ( z - m )  = ~ z sh ~z 
�9 0 

Furthermore, since [5] 
Coo 

K . ( y )  = ) o e -Y~162176162 ' (A.7) 

and 

S rE6 (z - m) = cos ~ (z - m) d{,  (A.8) 
0 

it follows that 

~ 3  (z  - m )  = K i (~_ ,,)(0). (A.9) 

Consequently, Eqn. (A.6) can be recast in the form 

Qo(z,m) = f o  Ki~(flr)Ki'(flr) drr - 27r" Ki(z+m)(O)+.c sh ~zKi(~-'n'(O) (A.10) 

The integral J'L2~ K~(x)dz = rce -~ verifies that the normalization constant in (A.9) is correct. 

Appendix B 

We invoke the Sommerfeld integral [6, p. 20; 7, p. 89] in a slightly modified form 

fp.+ ioo 7rH(o2)(kx) = e-JR . . . .  ~q,-O d~,, (B.1) 
r/--im 

re< # <  2re, 0 < q <  re, 0 <  ( <  zc, 

and also the integral representation of the addition theorem for circularly cylindrical waves 
IS, p. 374] 

i#+im r~H~oe,(kR) = elk . . . .  O-ik . . . . .  ~,+O-Oo, d~ ' (B.2) 
d q--ioo 
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U 1 (r/r o ; o)) - 

U2 (r/ro ; o9) -= - - -  

where 

where N 2 = r 2 + r 2 - -  2rr o cos (0-  0o) (Fig. 1). Then, recalling that the relevant two-dimensional 
Green's function is { -  �88 H~o 2) (kR)}, the spectral field due to a line source at (to, 0o) is obtained 
by a straightforward integration of Eqns. (4.7) and (4.25) over 8o. In this process we let every- 
where in the integrands 8o--+~ and ~ 8  o. Thus 

(D 
s~ {H(~ Ev~I R J +  H~o2'[~ 7 / ~ ] } - 4 7  is~ { F ( 8 - 8 ~ 1 7 6  , (B.3, 

iSo { G ( 8 o + r r _ 8 ) + G ( 8 o _ ~ _ 8 ) }  (B.4) 
49z 

= 1.2 + rg --  2rr o cos (8 + 8o), 

f 
# + i ~  

F(O) = Bo(O)e-i~o,/v,)t .... ~,+ ..... ,o+O)ldt~ , (B.5) 
q - l e o  

G(8o) = fu+i~176 +Bo(0)] e-i('~ . . . .  b(q,)+ . . . . .  (,-0o)]dff/ ' (B.6) 
3 ~/--iQo 

COSlp-2VxV~ ~ / l l  - (  v2~ sin Ip)2} I , [ ,I.] 
Bo(O)= va 2 , b,~b)=sin-1,  v2sinvj  �9 (B.7) 

c o s 0 + 2 v ~ V / { 1 - ( ) - ~ s i n ~ 9 )  } kvl 

The integrals in Eqns. (B.5) and (B.6) can be approximated by the saddle-point method. The 
case va =v2 lends itself however to exact evaluation. Indeed under the conditions P1#/~2, 
/?t =/?2, the integral expressions in Eqns. (3.11) and (3.12) degenerate into two algebraic equa- 
tions in Y(z) and X (z). Their solution renders 

Y(z) = 2I]~-i] ch c8 o sh nz 
sh rot + ash z (r~- 2a)' 

X(z)= V, ~]1-2 chz8osh2z(=-a  ) 
L1+zJ sh zrz+a sh z(~--2a) ' 

O" - -  

(B.8) 
2 - 1  _ fi2--~A1 ~ 1. 
2+1 /~2 +Pt -- 

(B.9) 

The spectral displacements in each wedge are then obtained from Eqns. (3.13), (3.14) and (3.15) 

4s o (~ sh nz ch z ( n -  0) ch z8 o 
C~(r, 8) - (i+2) ~2 -o sh 7 tz+~-~?~Z2~)  K'*(f lr)K'*(f lr~ (B.10) 

u~ (r, 8) = 2So f ~ sh ~ {ch z ( ~ -  8 > ) -  o- ch z ( ~ -  2~, + 8>)~ ch c8 
~2- Jo sh ~z + ash z (z[- 2a) 

• K,, (~r)Ki~ @o)d~, (B.11) 

0 < 8 o ~ 8 < ~ ,  

8> = max(8,8o), 8< = min(8, 80). 

The surface displacements are obtained from Eqns. (B.10) and (B.11) by the substitution 
8< =8=0,  8> =80. 

For c~ =�89 the quadrature of Eqns. (B.3) and (B.4) is immediate : 

_iso ] 
U 2 (r, co) - 20  72) 

+ H ~ o Z ' [ ~ x / ( r 2 + r Z - 2 r r o c o s ( 8 + 8 o ) ~ }  , (B.12) 
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U,(r ,  o g ) -  is~ { H ~ 1 7 6 1 7 6 1 7 6  

+ H~o2)[~ / ( r2+r~-2rrocos (O+Oo)~  

+-4- 

The relation K o (i c o v - l R ) =  -�89 H~o 2) (~ov-lR) was used in the derivation of Eqn. (B.8). Note  
that Eqns. (5.5) and (516) reduce to Eqn. (B.8) for v a = v z. Assuming a delta-function time depen- 
dence at the source, the passage to the time domain  is done by means of the hook-integral  

where H(t) is the unit step-function of Heaviside. 
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